Acta Cryst. (1999). C55, IUC9900110 [doi:10.1107/S0108270199098820]

# Dimethyl 2-(5,8-dichloro-10-oxotricyclo[7.3.2.0<sup>2,7</sup>]tetradeca-2(7),3,5,11-tetraen-6-ylmethyl)malonate

## S. Meinhardt, M. Schürmann, H. Preut and P. Eilbracht

#### Abstract

The title compound is a tricyclic polyfunctional system bearing an aromatic ring with a chlorine and a methylmalonic substituent and a bicyclo[3.3.2]decane subunit with another chlorine and an enone functionality.

#### Comment

1,3–5-η-Cycloheptene-1,3-diyl complexes of iron carbonyls can be decomposed by various methods to give different organic products, mostly with additional carbonylation (Hirschfelder & Eilbracht, 1995, 1996). In the present case, an iron compound bearing an enediyne side chain with CuCl<sub>2</sub> gives, together with the normal product, in an unexpected, and hitherto not observed cyclization product with aromatization and incorportion of two chlorine units.

#### **Experimental**

The title compound was obtained in 29% yield from dicarbonyl[1,3–5- $\eta$ -2-*endo*-(8',8'-di(methoxycarbonyl)-oct-3'-en-1',5'-diyne-1'-yl)cyclohept-4-ene-1,3-diyl]-triphenylphosphite iron as a side product together with 29% 4-*endo*-(8',8'-di(methoxycarbonyl)-oct-3'-ene-1',5'-diyn-1'-yl)- bicyclo[3.2.1]-oct-2-en-8-one upon treatment with CuCl<sub>2</sub> in dioxane. It was isolated and purified upon chromatography on silica with petroleum ether/*tert*-butyl methyl ether (1:1) and recrystal-lization from hexane.

#### Refinement

The structure was solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement applied full-matrix least-squares methods (Sheldrick, 1997). All H atoms were taken from a  $\Delta$ F map and refined isotropically.

#### **Computing details**

Data collection: Nonius MACH3 Argus; cell refinement: Nonius MACH3 Argus; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXL*Plus (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97* and *PARST95* (Nardelli, 1995).

#### (QA0159)

#### Crystal data

| $V = 1872.6 (4) \text{ Å}^3$              |
|-------------------------------------------|
| Z = 4                                     |
| Μο Κα                                     |
| $\mu = 0.38 \text{ mm}^{-1}$              |
| T = 291 (1)  K                            |
| $0.50 \times 0.35 \times 0.30 \text{ mm}$ |
|                                           |
|                                           |

#### Data collection

| Nonius MACH3<br>diffractometer                                   | 3323 reflections with $I > 2\sigma(I)$ |
|------------------------------------------------------------------|----------------------------------------|
| Absorption correction: ψ scan<br>(CORINC; Dräger & Gattow, 1971) | $R_{\rm int} = 0.035$                  |
| $T_{\min} = 0.905, T_{\max} = 1.000$                             | 3 standard reflections                 |
| 8968 measured reflections                                        | every 60 min                           |
| 4285 independent reflections                                     | intensity decay: 0.1%                  |
|                                                                  |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.040$ | 325 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.112$               | All H-atom parameters refined                              |
| <i>S</i> = 1.01                 | $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$        |
| 4285 reflections                | $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ |

#### References

Dräger, M. & Gattow, G. (1971). *CORINC. Acta Chem. Scand.* **25**, 761–762 revised by Wiehl, L. & Schollmeyer, D. (1994). Universität Mainz, Germany.

Hirschfelder, A. & Eilbracht, P. (1995). Synthesis, pp. 587.

Hirschfelder, A. & Eilbracht, P. (1996). Synthesis, pp. 488.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1 Siemens Analytical Y-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Scheme 1



supplementary materials

### (QA0159)

| Crystal data                                                   |                                              |
|----------------------------------------------------------------|----------------------------------------------|
| C <sub>20</sub> H <sub>20</sub> Cl <sub>2</sub> O <sub>5</sub> | $F_{000} = 856$                              |
| $M_r = 411.26$                                                 | $D_{\rm x} = 1.459 {\rm ~Mg} {\rm ~m}^{-3}$  |
| Monoclinic, $P2_1/n$                                           | Mo $K\alpha$ radiation $\lambda = 0.71069$ Å |
| a = 8.043 (1)  Å                                               | Cell parameters from 25 reflections          |
| b = 13.288 (2) Å                                               | $\theta = 13.3 - 16.2^{\circ}$               |
| c = 17.629 (2) Å                                               | $\mu = 0.38 \text{ mm}^{-1}$                 |
| $\beta = 96.34 (3)^{\circ}$                                    | T = 291 (1)  K                               |
| $V = 1872.6 (4) \text{ Å}^3$                                   | Block, colourless                            |
| Z = 4                                                          | $0.50\times0.35\times0.30~mm$                |
|                                                                |                                              |

#### Data collection

| Nonius MACH3<br>diffractometer                                   | $R_{\rm int} = 0.035$                |
|------------------------------------------------------------------|--------------------------------------|
| Radiation source: fine-focus sealed tube                         | $\theta_{\text{max}} = 27.5^{\circ}$ |
| Monochromator: graphite                                          | $\theta_{\min} = 3.1^{\circ}$        |
| T = 291(2)  K                                                    | $h = 0 \rightarrow 10$               |
| $\omega$ -2 $\theta$ scans                                       | $k = -17 \rightarrow 17$             |
| Absorption correction: ψ scan<br>(CORINC; Dräger & Gattow, 1971) | $l = -22 \rightarrow 22$             |
| $T_{\min} = 0.905, T_{\max} = 1.000$                             | 3 standard reflections               |
| 8968 measured reflections                                        | every 60 min                         |
| 4285 independent reflections                                     | intensity decay: 0.1%                |
| 3323 reflections with $I > 2\sigma(I)$                           |                                      |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full

$$R[F^2 > 2\sigma(F^2)] = 0.040$$

 $wR(F^2) = 0.112$ 

*S* = 1.01

4285 reflections

325 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map All H-atom parameters refined Calculated  $w = 1/[\sigma^2(F_o^2) + (0.0627P)^2 + 0.4165P]$ where  $P = (F_o^2 + 2F_c^2)/3$ ?  $(\Delta/\sigma)_{max} = <0.001$  $\Delta\rho_{max} = 0.33$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.34$  e Å<sup>-3</sup> Extinction correction: SHELXL97, Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0143 (16)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | У             | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|---------------|---------------|---------------------------|
| Cl1 | 0.11929 (6)   | 0.03109 (3)   | 0.09693 (3)   | 0.04978 (15)              |
| Cl2 | -0.16248 (8)  | 0.29302 (5)   | -0.15086 (3)  | 0.06745 (19)              |
| 01  | 0.25331 (16)  | 0.50285 (9)   | -0.02365 (7)  | 0.0435 (3)                |
| O2  | 0.2749 (2)    | 0.37200 (11)  | -0.10147 (9)  | 0.0646 (4)                |
| O3  | 0.30135 (18)  | 0.33035 (13)  | 0.11415 (9)   | 0.0623 (4)                |
| O4  | 0.08976 (17)  | 0.43620 (11)  | 0.12275 (7)   | 0.0511 (3)                |
| O5  | -0.0919 (2)   | 0.28758 (11)  | 0.24133 (10)  | 0.0667 (4)                |
| C1  | -0.0633 (2)   | 0.12039 (13)  | 0.19961 (9)   | 0.0386 (4)                |
| H1  | 0.036 (3)     | 0.1270 (14)   | 0.2331 (11)   | 0.042 (5)*                |
| C2  | -0.1651 (2)   | 0.21118 (13)  | 0.22052 (9)   | 0.0425 (4)                |
| C3  | -0.3476 (3)   | 0.20536 (15)  | 0.21717 (11)  | 0.0494 (4)                |
| Н3  | -0.395 (3)    | 0.2549 (19)   | 0.2485 (14)   | 0.067 (7)*                |
| C4  | -0.4432 (2)   | 0.14356 (15)  | 0.17283 (11)  | 0.0472 (4)                |
| H4  | -0.562 (3)    | 0.1496 (19)   | 0.1726 (14)   | 0.071 (7)*                |
| C5  | -0.3856 (2)   | 0.06915 (13)  | 0.11658 (10)  | 0.0396 (4)                |
| Н5  | -0.485 (3)    | 0.0370 (14)   | 0.0940 (11)   | 0.038 (5)*                |
| C6  | -0.2740 (3)   | -0.01562 (13) | 0.15266 (12)  | 0.0464 (4)                |
| H6A | -0.343 (3)    | -0.0664 (18)  | 0.1736 (13)   | 0.061 (6)*                |
| H6B | -0.225 (3)    | -0.0472 (15)  | 0.1116 (12)   | 0.041 (5)*                |
| C7  | -0.1427 (3)   | 0.01928 (14)  | 0.21517 (11)  | 0.0476 (4)                |
| H7A | -0.055 (3)    | -0.0337 (18)  | 0.2203 (13)   | 0.061 (6)*                |
| H7B | -0.188 (3)    | 0.0256 (16)   | 0.2632 (14)   | 0.056 (6)*                |
| C8  | -0.01237 (19) | 0.13653 (11)  | 0.11905 (9)   | 0.0316 (3)                |
| H8  | 0.063 (2)     | 0.1913 (13)   | 0.1234 (10)   | 0.028 (4)*                |
| C9  | -0.14563 (18) | 0.15624 (11)  | 0.05302 (8)   | 0.0290 (3)                |
| C10 | -0.31266 (19) | 0.12573 (11)  | 0.05269 (9)   | 0.0318 (3)                |
| C11 | -0.4270 (2)   | 0.15030 (14)  | -0.00959 (10) | 0.0402 (4)                |
| H11 | -0.542 (3)    | 0.1285 (14)   | -0.0076 (11)  | 0.043 (5)*                |
| C12 | -0.3819 (2)   | 0.20183 (14)  | -0.07121 (10) | 0.0430 (4)                |
| H12 | -0.464 (3)    | 0.2182 (15)   | -0.1125 (13)  | 0.052 (6)*                |
| C13 | -0.2171 (2)   | 0.22965 (13)  | -0.07091 (9)  | 0.0388 (4)                |
| C14 | -0.09543 (19) | 0.20944 (11)  | -0.01009 (9)  | 0.0312 (3)                |
| C15 | 0.0817 (2)    | 0.24470 (12)  | -0.01570 (10) | 0.0363 (3)                |

| H15B | 0.102 (2)  | 0.2346 (14)  | -0.0677 (12)  | 0.040 (5)*  |
|------|------------|--------------|---------------|-------------|
| H15A | 0.160 (2)  | 0.2061 (14)  | 0.0176 (11)   | 0.039 (5)*  |
| C16  | 0.1064 (2) | 0.35728 (12) | 0.00369 (9)   | 0.0334 (3)  |
| H16  | 0.003 (2)  | 0.3910 (14)  | -0.0053 (11)  | 0.040 (5)*  |
| C17  | 0.2220 (2) | 0.40875 (13) | -0.04741 (10) | 0.0380 (4)  |
| C18  | 0.3487 (3) | 0.56516 (18) | -0.07000 (14) | 0.0551 (5)  |
| H18A | 0.381 (4)  | 0.621 (2)    | -0.0397 (17)  | 0.092 (9)*  |
| H18B | 0.435 (3)  | 0.5299 (19)  | -0.0840 (15)  | 0.065 (7)*  |
| H18C | 0.276 (3)  | 0.5796 (18)  | -0.1203 (15)  | 0.065 (7)*  |
| C19  | 0.1783 (2) | 0.37256 (12) | 0.08607 (10)  | 0.0382 (4)  |
| C20  | 0.1534 (4) | 0.4559 (2)   | 0.20169 (13)  | 0.0674 (7)  |
| H20A | 0.075 (4)  | 0.500 (2)    | 0.220 (2)     | 0.102 (11)* |
| H20B | 0.254 (4)  | 0.487 (2)    | 0.2012 (17)   | 0.083 (9)*  |
| H20C | 0.161 (3)  | 0.395 (2)    | 0.2274 (15)   | 0.072 (8)*  |
|      |            |              |               |             |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|           | $U^{11}$          | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$      |
|-----------|-------------------|-------------|-------------|--------------|-------------|---------------|
| Cl1       | 0.0429 (3)        | 0.0460 (3)  | 0.0592 (3)  | 0.01623 (18) | 0.0000 (2)  | -0.00451 (19) |
| Cl2       | 0.0721 (4)        | 0.0882 (4)  | 0.0413 (3)  | -0.0142 (3)  | 0.0028 (2)  | 0.0227 (2)    |
| 01        | 0.0419 (7)        | 0.0427 (6)  | 0.0474 (7)  | -0.0091 (5)  | 0.0115 (5)  | -0.0003 (5)   |
| 02        | 0.0828 (11)       | 0.0553 (8)  | 0.0634 (9)  | -0.0154 (8)  | 0.0421 (8)  | -0.0103 (7)   |
| 03        | 0.0503 (8)        | 0.0740 (10) | 0.0589 (9)  | 0.0086 (7)   | -0.0109 (7) | 0.0043 (7)    |
| O4        | 0.0536 (8)        | 0.0578 (8)  | 0.0419 (7)  | -0.0015 (6)  | 0.0053 (6)  | -0.0134 (6)   |
| 05        | 0.0693 (10)       | 0.0540 (9)  | 0.0778 (11) | -0.0114 (7)  | 0.0134 (8)  | -0.0278 (8)   |
| C1        | 0.0414 (9)        | 0.0405 (9)  | 0.0318 (8)  | -0.0014 (7)  | -0.0059 (7) | 0.0010 (6)    |
| C2        | 0.0538 (10)       | 0.0430 (9)  | 0.0312 (8)  | -0.0034 (8)  | 0.0068 (7)  | -0.0056 (6)   |
| C3        | 0.0550 (11)       | 0.0506 (11) | 0.0456 (10) | 0.0027 (9)   | 0.0189 (8)  | -0.0046 (8)   |
| C4        | 0.0399 (9)        | 0.0554 (11) | 0.0486 (10) | -0.0002 (8)  | 0.0145 (8)  | 0.0060 (8)    |
| C5        | 0.0360 (8)        | 0.0410 (9)  | 0.0416 (8)  | -0.0109 (7)  | 0.0034 (7)  | 0.0029 (7)    |
| C6        | 0.0538 (11)       | 0.0338 (9)  | 0.0514 (10) | -0.0082 (8)  | 0.0049 (9)  | 0.0058 (8)    |
| C7        | 0.0566 (11)       | 0.0415 (10) | 0.0435 (10) | 0.0001 (8)   | 0.0005 (8)  | 0.0105 (7)    |
| C8        | 0.0288 (7)        | 0.0297 (7)  | 0.0355 (8)  | 0.0017 (6)   | -0.0007 (6) | -0.0034 (6)   |
| C9        | 0.0285 (7)        | 0.0271 (7)  | 0.0308 (7)  | 0.0011 (5)   | 0.0012 (5)  | -0.0042 (5)   |
| C10       | 0.0308 (7)        | 0.0312 (7)  | 0.0331 (7)  | -0.0020 (6)  | 0.0021 (6)  | -0.0027 (6)   |
| C11       | 0.0303 (8)        | 0.0459 (9)  | 0.0429 (9)  | -0.0039 (7)  | -0.0032 (7) | -0.0024 (7)   |
| C12       | 0.0396 (9)        | 0.0496 (10) | 0.0368 (8)  | -0.0002 (7)  | -0.0091 (7) | 0.0006 (7)    |
| C13       | 0.0457 (9)        | 0.0389 (8)  | 0.0317 (8)  | -0.0028 (7)  | 0.0034 (7)  | 0.0020 (6)    |
| C14       | 0.0317 (7)        | 0.0296 (7)  | 0.0326 (7)  | -0.0001 (6)  | 0.0047 (6)  | -0.0052 (6)   |
| C15       | 0.0338 (8)        | 0.0359 (8)  | 0.0411 (9)  | -0.0008 (6)  | 0.0121 (7)  | -0.0027 (7)   |
| C16       | 0.0271 (7)        | 0.0361 (8)  | 0.0376 (8)  | -0.0001 (6)  | 0.0067 (6)  | -0.0009 (6)   |
| C17       | 0.0327 (8)        | 0.0410 (8)  | 0.0412 (8)  | -0.0019 (7)  | 0.0079 (7)  | 0.0019 (7)    |
| C18       | 0.0566 (13)       | 0.0505 (12) | 0.0608 (13) | -0.0151 (10) | 0.0184 (11) | 0.0045 (10)   |
| C19       | 0.0338 (8)        | 0.0379 (8)  | 0.0428 (9)  | -0.0079 (6)  | 0.0041 (7)  | 0.0019 (7)    |
| C20       | 0.091 (2)         | 0.0672 (16) | 0.0427 (11) | -0.0202 (14) | 0.0015 (12) | -0.0133 (11)  |
|           |                   |             |             |              |             |               |
| Geometric | parameters (Å, °) |             |             |              |             |               |

Cl1—C8 1.8242 (15) C7—H7B 0.96 (2)

# supplementary materials

| Cl2—C13    | 1.7392 (17) | C8—C9         | 1.515 (2)   |
|------------|-------------|---------------|-------------|
| O1—C17     | 1.334 (2)   | С8—Н8         | 0.943 (18)  |
| O1—C18     | 1.442 (2)   | C9—C10        | 1.403 (2)   |
| O2—C17     | 1.191 (2)   | C9—C14        | 1.414 (2)   |
| O3—C19     | 1.196 (2)   | C10—C11       | 1.391 (2)   |
| O4—C19     | 1.320 (2)   | C11—C12       | 1.367 (3)   |
| O4—C20     | 1.453 (3)   | C11—H11       | 0.97 (2)    |
| O5—C2      | 1.210 (2)   | C12—C13       | 1.376 (3)   |
| C1—C7      | 1.525 (2)   | C12—H12       | 0.95 (2)    |
| C1—C2      | 1.526 (3)   | C13—C14       | 1.395 (2)   |
| C1—C8      | 1.536 (2)   | C14—C15       | 1.513 (2)   |
| C1—H1      | 0.95 (2)    | C15—C16       | 1.543 (2)   |
| C2—C3      | 1.464 (3)   | C15—H15B      | 0.96 (2)    |
| C3—C4      | 1.321 (3)   | C15—H15A      | 0.96 (2)    |
| С3—Н3      | 0.97 (3)    | C16—C19       | 1.516 (2)   |
| C4—C5      | 1.509 (3)   | C16—C17       | 1.526 (2)   |
| C4—H4      | 0.96 (3)    | C16—H16       | 0.944 (19)  |
| C5—C10     | 1.525 (2)   | C18—H18A      | 0.94 (3)    |
| C5—C6      | 1.534 (3)   | C18—H18B      | 0.90 (3)    |
| С5—Н5      | 0.95 (2)    | C18—H18C      | 1.03 (3)    |
| C6—C7      | 1.513 (3)   | C20—H20A      | 0.94 (4)    |
| С6—Н6А     | 0.97 (2)    | C20—H20B      | 0.91 (3)    |
| С6—Н6В     | 0.96 (2)    | C20—H20C      | 0.93 (3)    |
| С7—Н7А     | 1.00 (2)    |               |             |
| C17—O1—C18 | 117.01 (15) | C11—C10—C5    | 115.08 (14) |
| C19—O4—C20 | 115.63 (19) | C9—C10—C5     | 125.88 (14) |
| C7—C1—C2   | 114.00 (16) | C12-C11-C10   | 122.31 (15) |
| C7—C1—C8   | 116.68 (15) | C12—C11—H11   | 121.0 (11)  |
| C2—C1—C8   | 108.54 (13) | C10-C11-H11   | 116.7 (11)  |
| C7—C1—H1   | 108.2 (12)  | C11—C12—C13   | 118.16 (16) |
| C2-C1-H1   | 102.5 (12)  | C11—C12—H12   | 120.0 (13)  |
| C8—C1—H1   | 105.6 (12)  | С13—С12—Н12   | 121.8 (13)  |
| O5—C2—C3   | 120.59 (18) | C12—C13—C14   | 123.01 (15) |
| O5—C2—C1   | 118.71 (18) | C12—C13—Cl2   | 117.15 (13) |
| C3—C2—C1   | 120.69 (15) | C14—C13—Cl2   | 119.84 (13) |
| C4—C3—C2   | 124.91 (17) | C13—C14—C9    | 117.64 (14) |
| С4—С3—Н3   | 121.4 (15)  | C13—C14—C15   | 118.38 (15) |
| С2—С3—Н3   | 113.6 (15)  | C9—C14—C15    | 123.98 (14) |
| C3—C4—C5   | 126.54 (17) | C14—C15—C16   | 112.65 (13) |
| C3—C4—H4   | 117.8 (15)  | C14—C15—H15B  | 106.3 (12)  |
| C5—C4—H4   | 115.5 (15)  | C16-C15-H15B  | 108.5 (11)  |
| C4—C5—C10  | 109.48 (14) | C14—C15—H15A  | 110.7 (12)  |
| C4—C5—C6   | 114.64 (15) | C16-C15-H15A  | 108.8 (11)  |
| C10—C5—C6  | 114.39 (15) | H15B—C15—H15A | 109.9 (17)  |
| C4—C5—H5   | 105.4 (12)  | C19—C16—C17   | 108.23 (13) |
| С10—С5—Н5  | 106.5 (12)  | C19—C16—C15   | 111.62 (14) |
| С6—С5—Н5   | 105.6 (11)  | C17—C16—C15   | 112.07 (13) |
| C7—C6—C5   | 113.99 (15) | C19—C16—H16   | 109.4 (11)  |
| С7—С6—Н6А  | 108.4 (14)  | C17—C16—H16   | 105.8 (11)  |

| С5—С6—Н6А      | 109.7 (14)   | C15—C16—H16     | 109.5 (11)   |
|----------------|--------------|-----------------|--------------|
| С7—С6—Н6В      | 112.0 (12)   | O2—C17—O1       | 124.34 (16)  |
| С5—С6—Н6В      | 106.1 (12)   | O2-C17-C16      | 125.71 (16)  |
| H6A—C6—H6B     | 106.3 (18)   | O1—C17—C16      | 109.93 (14)  |
| C6—C7—C1       | 114.29 (15)  | O1-C18-H18A     | 105.4 (18)   |
| С6—С7—Н7А      | 106.4 (14)   | O1-C18-H18B     | 109.5 (16)   |
| С1—С7—Н7А      | 109.3 (14)   | H18A—C18—H18B   | 113 (2)      |
| С6—С7—Н7В      | 111.3 (14)   | O1-C18-H18C     | 107.9 (14)   |
| С1—С7—Н7В      | 106.8 (13)   | H18A—C18—H18C   | 116 (2)      |
| H7A—C7—H7B     | 108.6 (19)   | H18B—C18—H18C   | 104 (2)      |
| C9—C8—C1       | 119.73 (13)  | O3—C19—O4       | 124.34 (17)  |
| C9—C8—Cl1      | 110.28 (10)  | O3—C19—C16      | 122.95 (17)  |
| C1—C8—Cl1      | 108.11 (11)  | O4—C19—C16      | 112.70 (14)  |
| С9—С8—Н8       | 108.7 (10)   | O4—C20—H20A     | 105 (2)      |
| С1—С8—Н8       | 105.4 (10)   | O4—C20—H20B     | 107.0 (19)   |
| Cl1—C8—H8      | 103.3 (10)   | H20A-C20-H20B   | 110 (3)      |
| C10-C9-C14     | 119.85 (13)  | O4—C20—H20C     | 107.9 (16)   |
| С10—С9—С8      | 123.30 (14)  | H20A—C20—H20C   | 113 (3)      |
| C14—C9—C8      | 116.84 (13)  | H20B-C20-H20C   | 113 (3)      |
| С11—С10—С9     | 119.01 (14)  |                 |              |
| C7—C1—C2—O5    | 149.23 (18)  | C9—C10—C11—C12  | 1.1 (3)      |
| C8—C1—C2—O5    | -78.9 (2)    | C5-C10-C11-C12  | 179.36 (16)  |
| C7—C1—C2—C3    | -29.4 (2)    | C10-C11-C12-C13 | 0.2 (3)      |
| C8—C1—C2—C3    | 102.49 (18)  | C11—C12—C13—C14 | -1.3 (3)     |
| O5—C2—C3—C4    | 155.4 (2)    | C11—C12—C13—Cl2 | 178.81 (14)  |
| C1—C2—C3—C4    | -26.0 (3)    | C12-C13-C14-C9  | 1.2 (2)      |
| C2—C3—C4—C5    | -1.2 (3)     | Cl2—C13—C14—C9  | -178.96 (12) |
| C3—C4—C5—C10   | -65.5 (2)    | C12-C13-C14-C15 | -179.31 (16) |
| C3—C4—C5—C6    | 64.6 (2)     | Cl2—C13—C14—C15 | 0.5 (2)      |
| C4—C5—C6—C7    | -42.9 (2)    | C10-C9-C14-C13  | 0.1 (2)      |
| C10—C5—C6—C7   | 84.8 (2)     | C8—C9—C14—C13   | -179.02 (13) |
| C5—C6—C7—C1    | -38.6 (3)    | C10-C9-C14-C15  | -179.34 (14) |
| C2—C1—C7—C6    | 83.2 (2)     | C8—C9—C14—C15   | 1.5 (2)      |
| C8—C1—C7—C6    | -44.7 (2)    | C13—C14—C15—C16 | 80.28 (18)   |
| C7—C1—C8—C9    | 74.6 (2)     | C9—C14—C15—C16  | -100.25 (17) |
| C2—C1—C8—C9    | -55.90 (18)  | C14-C15-C16-C19 | 96.62 (17)   |
| C7—C1—C8—Cl1   | -52.81 (17)  | C14—C15—C16—C17 | -141.79 (14) |
| C2-C1-C8-Cl1   | 176.75 (11)  | C18—O1—C17—O2   | 4.2 (3)      |
| C1—C8—C9—C10   | -24.2 (2)    | C18—O1—C17—C16  | -174.54 (16) |
| Cl1—C8—C9—C10  | 102.16 (15)  | C19—C16—C17—O2  | 131.1 (2)    |
| C1—C8—C9—C14   | 154.93 (14)  | C15—C16—C17—O2  | 7.6 (3)      |
| Cl1—C8—C9—C14  | -78.72 (15)  | C19—C16—C17—O1  | -50.18 (18)  |
| C14—C9—C10—C11 | -1.2 (2)     | C15-C16-C17-O1  | -173.70 (14) |
| C8—C9—C10—C11  | 177.87 (14)  | C20—O4—C19—O3   | 1.7 (3)      |
| C14—C9—C10—C5  | -179.28 (15) | C20—O4—C19—C16  | -178.87 (17) |
| C8—C9—C10—C5   | -0.2 (2)     | C17—C16—C19—O3  | -72.0 (2)    |
| C4—C5—C10—C11  | -89.94 (18)  | C15—C16—C19—O3  | 51.8 (2)     |
| C6—C5—C10—C11  | 139.83 (16)  | C17—C16—C19—O4  | 108.50 (16)  |
| C4—C5—C10—C9   | 88.19 (19)   | C15—C16—C19—O4  | -127.71 (15) |

C6—C5—C10—C9 -42.0 (2)